skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lewis, Frank L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Safety and efficiency are primary goals of air traffic management. With the integration of unmanned aerial vehicles (UAVs) into the airspace, UAV traffic management (UTM) has attracted significant interest in the research community to maintain the capacity of three-dimensional (3D) airspace, provide information, and avoid collisions. We propose a new decision-making architecture for UAVs to avoid collision by formulating the problem into a multi-agent game in a 3D airspace. In the proposed game-theoretic approach, the Ego UAV plays a repeated two-player normal-form game, and the payoff functions are designed to capture both the safety and efficiency of feasible actions. An optimal decision in the form of Nash equilibrium (NE) is obtained. Simulation studies are conducted to demonstrate the performance of the proposed game-theoretic collision avoidance approach in several representative multi-UAV scenarios. 
    more » « less
  2. Random mobility models (RMMs) capture the statistical movement characteristics of mobile agents and play an important role in the evaluation and design of mobile wireless networks. Particularly, RMMs are used to model the movement of unmanned aerial vehicles (UAVs) as the platforms for airborne communication networks. In many RMMs, the movement characteristics are captured as stochastic processes constructed using two types of independent random variables. The first type describes the movement characteristics for each maneuver and the second type describes how often the maneuvers are switched. We develop a generic method to estimate RMMs that are composed of these two types of random variables. Specifically, we formulate the dynamics of movement characteristics generated by the two types of random variables as a special Jump Markov System and develop an estimation method based on the Expectation–Maximization principle. Both off-line and on-line variants of the method are developed. We apply the estimation method to the Smooth–Turn RMM developed for fixed-wing UAVs. The simulation study validates the performance of the proposed estimation method. We further conduct a UAV experimental study and apply the estimation methods to real UAV trajectories. 
    more » « less
  3. In this paper, we address the problem of model-free optimal output regulation of discrete-time systems that aims at achieving asymptotic tracking and disturbance rejection when we have no exact knowledge of the system parameters. Insights from reinforcement learning and adaptive dynamic programming are used to solve this problem. An interesting discovery is that the model-free discrete-time output regulation differs from the continuous-time counterpart in terms of the persistent excitation condition required to ensure the uniqueness and convergence of the policy iteration. In this work, it is shown that this persistent excitation condition must be carefully established in order to ensure the uniqueness and convergence properties of the policy iteration. 
    more » « less
  4. null (Ed.)